+49 (0) 541 / 40666 200

Sie erreichen uns Montag bis
Freitag von 8 bis 16 Uhr

 

Schreiben Sie uns eine Email oder benutzten eine andere Kontaktmöglichkeit
 Versandkostenfrei in Deutschland
Einkaufskorb
Keine Artikel
in Ihrem
Einkaufskorb

An Introduction to Statistical Learning

with Applications in R - 400 - 18532981

Buch von Gareth James , Daniela Witten , Trevor Hastie und Robert Tibshirani

94525837

nur 92,79 €

(portofrei!, inkl. MwSt.)

Widerruf zu diesem Artikel
  • Details
  • Beschreibung
  • Information
  • Information zum Autor
  • Inhaltsverzeichnis
Details
Artikel-Nr.:
94525837
Im Sortiment seit:
19.09.2021
Erscheinungsdatum:
24.08.2021
Medium:
Buch
Einband:
Gebunden
Auflage:
2. Auflage von 1921
2. Auflage
Autor:
James, Gareth
Witten, Daniela
Hastie, Trevor
Tibshirani, Robert
Verlag:
Springer-Verlag GmbH
Springer US
Sprache:
Englisch
Rubrik:
Mathematik
Wahrscheinlichkeitstheorie
Seiten:
607
Abbildungen:
4 schwarz-weiße und 138 farbige Abbildungen, 10 schwarz-weiße Tabellen
Reihe:
Springer Texts in Statistics
Gewicht:
996 gr
Beschreibung
An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility.
Information
Presents an essential statistical learning toolkit for practitioners in science, industry, and other fields Demonstrates application of the statistical learning methods in R Includes new chapters on deep learning, survival analysis, and multiple testing Covers a range of topics, such as linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, and deep learning Features extensive color graphics for a dynamic learning experience
Information zum Autor
Gareth James is a professor of data sciences and operations, and the E. Morgan Stanley Chair in Business Administration, at the University of Southern California. He has published an extensive body of methodological work in the domain of statistical learning with particular emphasis on high-dimensional and functional data. The conceptual framework for this book grew out of his MBA elective courses in this area. Daniela Witten is a professor of statistics and biostatistics, and the Dorothy Gilford Endowed Chair, at the University of Washington. Her research focuses largely on statistical machine learning techniques for the analysis of complex, messy, and large-scale data, with an emphasis on unsupervised learning. Trevor Hastie and Robert Tibshirani are professors of statistics at Stanford University, and are co-authors of the successful textbook Elements of Statistical Learning. Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap.
Inhaltsverzeichnis
Preface.- 1 Introduction.- 2 Statistical Learning.- 3 Linear Regression.- 4 Classification.- 5 Resampling Methods.- 6 Linear Model Selection and Regularization.- 7 Moving Beyond Linearity.- 8 Tree-Based Methods.- 9 Support Vector Machines.- 10 Deep Learning.- 11 Survival Analysis and Censored Data.- 12 Unsupervised Learning.- 13 Multiple Testing.- Index.