+49 (0) 541 / 40666 200

Sie erreichen uns Montag bis
Freitag von 8 bis 16 Uhr

 

Schreiben Sie uns eine Email oder benutzten eine andere Kontaktmöglichkeit
 Versandkostenfrei in Deutschland
Einkaufskorb
Keine Artikel
in Ihrem
Einkaufskorb

Konkrete Mathematik (nicht nur) für Informatiker

Mit vielen Grafiken und Algorithmen in Python - 500 - 13961139

Buch von Edmund Weitz

87923803
Zum Vergrößern anklicken

nur 49,99 €

(portofrei!, inkl. MwSt.)

Widerruf zu diesem Artikel
  • Details
  • Beschreibung
  • Information
  • Information zum Autor
  • Inhaltsverzeichnis
  • Bilder
Details
Artikel-Nr.:
87923803
Im Sortiment seit:
01.09.2018
Erscheinungsdatum:
09/2018
Medium:
Buch
Einband:
Gebunden
Auflage:
1. Aufl. 2018
Autor:
Weitz, Edmund
Verlag:
Springer-Verlag GmbH
Springer Fachmedien Wiesbaden GmbH
Imprint:
Springer Spektrum
Sprache:
Deutsch
Rubrik:
Mathematik
Sonstiges
Seiten:
942
Abbildungen:
Bibliographie
Informationen:
Book
Gewicht:
2104 gr
Beschreibung
Das etwas andere Mathe-Lehrbuch: Mathematik, die Informatiker (und nicht nur die!) wirklich brauchen, und die direkt am Computer umgesetzt wird in Form von kleinen Algorithmen, numerischen "Experimenten" und interaktiven Visualisierungen. Man lernt, wie man dem Computer das Rechnen überlässt, während man selbst den mathematischen Überblick behält, typische Fehler vermeidet und die Ergebnisse richtig interpretiert. (Und nebenbei lernt man noch die beliebte Programmiersprache Python sowie den Umgang mit einem Computeralgebrasystem.) Gleichzeitig wird die Mathematik aber nicht zur "Hilfswissenschaft" degradiert. Der Autor motiviert und begründet im "Plauderton" und mit konkreten Beispielen und Knobelaufgaben (und manchmal auch mit kleinen philosophischen und historischen Exkursen), um so den Leser zum Mitmachen und Mitdenken aufzufordern. Im Idealfall hat man am Ende nicht nur etwas gelernt, sondern verspürt Lust auf mehr - und sieht die Mathematik danach vielleicht mit anderen Augen. Mit informatik-spezifischen Anwendungen unter anderem aus der Kryptographie, der Kodierungs- und Komplexitätstheorie sowie der Computergrafik. Unterstützt durch viele farbige Grafiken, etwa 1000 Aufgaben mit Lösungen und nicht zuletzt Hunderte von Videos, in denen man sich das Gelesene vom Autor noch mal "persönlich" erklären lassen kann.
Information
Zusatzmaterial: Unterstützung durch erfolgreichen y**tu*e-Kanal (Videos)

Onlinematerial auf der Verlagsseite: Fast 300 Seiten mit Lösungen zu ausgewählten Aufgaben

Begründungen im "Plauderton" statt abstrakter mathematischer Beweise

Neue Konzepte werden anhand konkreter Beispiele eingeführt

Die Mathematik wird zielgruppengerecht parallel zur bzw. durch die Umsetzung am Computer gelehrt, viele Visualisierungen, anwendungsorientiert
Information zum Autor
Prof. Dr. Edmund Weitz, Diplom und Promotion in Mathematik (Universität Hannover), langjährige Praxiserfahrung, ist Professor für Mathematik und Informatik an der Hochschule für Angewandte Wissenschaften Hamburg. 2015 erhielt er den Hamburger Lehrpreis, der für herausragende und innovative Lehrleistungen an den Hamburger Hochschulen verliehen wird.
Inhaltsverzeichnis
Erste Schritte mit Python.- Ganze Zahlen.- Modulare Arithmetik.- Negative Zahlen.- Euklids Algorithmus.- Division.- Der chinesische Restsatz.- Primzahlen.- Anwendung: Primzahltests.- Anwendung: Das RSA-Kryptosystem.- Rationale Zahlen.- Rationale Zahlen im Computer.- Das IEEE-Format.- Irrationale Zahlen.- Mengen.- Endliche Kombinatorik.- Permutationen, Variationen und Kombinationen.- Unendliche Mengen.- Funktionen.- Überabzählbare Mengen.- Computeralgebra.- Elementargeometrie.- Die trigonometrischen Funktionen.- Analytische Geometrie: Koordinaten.- Vektoren.- Matrizen.- Lineare Gleichungssysteme.- Computergrafik, erste Schritte.- Lineare Abbildungen.- Inverse Matrizen und Determinanten.- Das Skalarprodukt.- Anwendung: Homogene Koordinaten.- Anwendung: 3D-Darstellung.- Ausblick: Abstrakte Vektorräume.- Komplexe Zahlen.- Wo sind die komplexen Nullstellen.- Folgen und Grenzwerte.- Grenzwerte spezieller Folgen.- Die Landau-Symbole.- Die Mandelbrot-Menge.- Funktionen zeichnen.- Grenzwerte und Stetigkeit.- Reihen: unendliche Summen.- Die Exponentialfunktion.- Integrale: kontinuierliche Summen.- Ableitungen: lineare Approximationen.- Grundlagen der Analysis.- Der Fundamentalsatz der Analysis.- Polynome.- Der Fundamentalsatz der Algebra.- Potenz- und Taylorreihen.- Anwendung: Berechnung von p.- Die Exponentialfunktion im Komplexen.- Fourier-Analysis.- Diskrete Fouriertransformation.- Gewöhnliche Differentialgleichungen.- Polynome über endlichen Körpern.- Anwendung: Das CRC-Verfahren.- Anwendung: Reed-Solomon-Codes.- Wahrscheinlichkeit.-Bedingte Wahrscheinlichkeit.- Anwendung: Dateivergleich.- Zufallsvariablen.- Diskrete Verteilungen.- Stetige Verteilungen.- Grenzwertsätze der Stochastik.- Mathematische Statistik.- Anwendung: Datenkompression.- Anhänge.
Bilder