+49 (0) 541 / 40666 200

Sie erreichen uns Montag bis
Freitag von 8 bis 16 Uhr

 

Schreiben Sie uns eine Email oder benutzten eine andere Kontaktmöglichkeit
 Versandkostenfrei in Deutschland
Einkaufskorb
Keine Artikel
in Ihrem
Einkaufskorb

Foundations of Signal Processing

Buch von Martin Vetterli , Jelena Kovacevic und Vivek K. Goyal

75649032
Zum Vergrößern anklicken

nur 61,49 €

Sie sparen 2,50 € (4 %) gegenüber dem alten Preis von 63,99 €
(portofrei!)

Widerruf zu diesem Artikel
  • Details
  • Beschreibung
  • Information zum Autor
  • Inhaltsverzeichnis
  • Bilder
Details
Artikel-Nr.:
75649032
Im Sortiment seit:
26.02.2015
Erscheinungsdatum:
04.09.2014
Medium:
Buch
Einband:
Gebunden
Auflage:
Neuauflage
Neuauflage. New
Autor:
Vetterli, Martin
Kovacevic, Jelena
Goyal, Vivek K.
Verlag:
Cambridge University Pr.
Sprache:
Englisch
Rubrik:
Elektronik
Elektrotechnik, Nachrichtentechnik
Seiten:
715
Abbildungen:
200 b/w illus. 44 tables 190 exercises
Gewicht:
1597 gr
Beschreibung
This comprehensive and accessible textbook introduces students to the basics of modern signal processing techniques.
Information zum Autor
Martin Vetterli is a Professor of Computer and Communication Sciences at the Ecole Polytechnique Federale de Lausanne, and the President of the Swiss National Science Foundation. He has formerly held positions at Columbia University and the University of California, Berkeley, and has received the IEEE Signal Processing Society Technical Achievement Award (2001) and Society Award (2010). He is a Fellow of the ACM, EURASIP and the IEEE, and is a Thomson Reuters Highly Cited Researcher in Engineering. Jelena Kovacevic is the David Edward Schramm Professor and Head of Electrical and Computer Engineering, and a Professor of Biomedical Engineering, at Carnegie Mellon University. She has been awarded the Belgrade October Prize (1986), the E. I. Jury Award (1991) from Columbia University, and the 2010 Philip L. Dowd Fellowship at Carnegie Mellon University. She is a former Editor-in-Chief of IEEE Transactions on Image Processing, and a Fellow of the IEEE. Vivek K Goyal is an Assistant Professor of Electrical and Computer Engineering at Boston University, and a former Esther and Harold E. Edgerton Associate Professor of Electrical Engineering at the Massachusetts Institute of Technology. He has been awarded the IEEE Signal Processing Society Magazine Award (2002), and the Eliahu Jury Award (1998) from the University of California, Berkeley, for outstanding achievement in systems, communications, control and signal processing. He is a Fellow of the IEEE.
Inhaltsverzeichnis
1. On rainbows and spectra; 2. From Euclid to Hilbert: 2.1. Introduction; 2.2. Vector spaces; 2.3. Hilbert spaces; 2.4. Approximations, projections, and decompositions; 2.5. Bases and frames; 2.6. Computational aspects; 2.A. Elements of analysis and topology; 2.B. Elements of linear algebra; 2.C. Elements of probability; 2.D. Basis concepts; Exercises with solutions; Exercises; 3. Sequences and discrete-time systems: 3.1. Introduction; 3.2. Sequences; 3.3. Systems; 3.4. Discrete-time Fourier Transform; 3.5. z-Transform; 3.6. Discrete Fourier Transform; 3.7. Multirate sequences and systems; 3.8. Stochastic processes and systems; 3.9. Computational aspects; 3.A. Elements of analysis; 3.B. Elements of algebra; Exercises with solutions; Exercises; 4. Functions and continuous-time systems: 4.1. Introduction; 4.2. Functions; 4.3. Systems; 4.4. Fourier Transform; 4.5. Fourier series; 4.6. Stochastic processes and systems; Exercises with solutions; Exercises; 5. Sampling and interpolation: 5.1. Introduction; 5.2. Finite-dimensional vectors; 5.3. Sequences; 5.4. Functions; 5.5. Periodic functions; 5.6. Computational aspects; Exercises with solutions; Exercises; 6. Approximation and compression: 6.1. Introduction; 6.2. Approximation of functions on finite intervals by polynomials; 6.3. Approximation of functions by splines; 6.4. Approximation of functions and sequences by series truncation; 6.5. Compression; 6.6. Computational aspects; Exercises with solutions; Exercises; 7. Localization and uncertainty: 7.1. Introduction; 7.2. Localization for functions; 7.3. Localization for sequences; 7.4. Tiling the time-frequency plane; 7.5. Examples of local Fourier and wavelet bases; 7.6. Recap and a glimpse forward; Exercises with solutions; Exercises.
Bilder